\begin{tabular}{|c|c|c|c|c|c|}
\hline 1 \& \begin{tabular}{l}
ii \\
iiiA \\
iiiB
\end{tabular} \& \begin{tabular}{l}
Correct attempt at cos rule correct full method for C \(C=141.1 \ldots\) \\
bearing \(=[0] 38.8\) cao \\
\(1 / 2 \times 118 \times 82 \times\) sin their C or supp.
\[
3030 \text { to } 3050\left[\mathrm{~m}^{2}\right]
\]
\[
\sin (\theta / 2)=(1 / 2 \times 189) / 130
\]
\[
1.6276 \rightarrow 1.63
\]
\[
\begin{aligned}
\& 0.5 \times 130^{2} \times \sin 1.63 \\
\& 0.5 \times 130^{2} \times 1.63
\end{aligned}
\] \\
their sector - their triangle AOB
\[
5315 \text { to } 5340
\]
\end{tabular} \& \begin{tabular}{l}
M1 \\
M1 \\
A1 \\
A1 \\
M1 \\
A1 \\
M1 \\
A1 \\
M1 \\
M1 \\
M1 \\
A1
\end{tabular} \& \begin{tabular}{l}
any vertex, any letter \\
or B4 \\
or correct use of angle A or angle B
\[
\begin{aligned}
\& \text { or } \cos \theta=\left(130^{2}+130^{2}-\right. \\
\& \left.189^{2}\right) /(2 \times 130 \times 130)
\end{aligned}
\] \\
In all methods, the more accurate number to be seen. condone their \(\theta\) (8435) condone their \(\theta\) in radians (13770) dep on sector > triangle
\end{tabular} \& 4
2
2

4 \\
\hline
\end{tabular}

$\mathbf{2}$	9.0 or 8.96 or 8.960
	13.2577

B3	M1 for $\left[\mathrm{BC}^{2}=\right] 6.8^{2}+4.1^{2}-2 \times 4.1 \times 6.8 \times \cos 108$	
B2	A1 for $80.2(8 .),. 8.37($ grads), 6.49 (rads) Correctly rounded to 3 or more sf M1 for $0.5 \times 4.1 \times 6.8 \times \sin 108$	5
	For complete long methods using BC, allow M1 and A1 for 13.2 to 13.3	[16]

3 (a)	$10.6^{2}+9.2^{2}-2 \times 10.6 \times 9.2 \times \cos 68^{\circ}$ 0. $\mathrm{QR}=11.1(3 \ldots)$ $\frac{\sin 68}{\text { their } Q R}=\frac{\sin \mathrm{Q}}{9.2} \text { or } \frac{\sin \mathrm{R}}{10.6} \text { o. }$ $\mathrm{Q}=50.01 . .^{\circ} \text { or } \mathrm{R}=61.98 . .^{\circ}$ bearing $=174.9$ to 175°	M1 A1 M1 A1 B1	Or correct use of Cosine Rule 2 s.f. or better
3 (b)	$\begin{align*} & \text { (A) } 1 / 2 \times 8^{2} \times \frac{2 \pi}{3} \tag{i}\\ & =\frac{6400 \pi}{3} \end{align*}$	$\begin{aligned} & \text { M1 } \\ & \text { A1 } \end{aligned}$	6702.(...) to 2 s.f. or more
3 (b) (ii)	$\mathrm{DC}=80 \sin \left(\frac{\pi}{3}\right)=80 \frac{\sqrt{3}}{2}$ Area $=1 / 2 \times$ their $\mathrm{DA} \times 40 \sqrt{ } 3$ or $1 / 2 \times 40 \sqrt{3} \times 80 \times \sin ($ their DCA) 0. area of triangle $=800 \sqrt{ } 3$ or 1385.64... to 3s.f. or more	B1 M1 A1	both steps required s.o.
3 (b) (iii)	$\begin{aligned} & \text { area of } 1 / 4 \text { circle }=1 / 2 \times \frac{\pi}{2} \times(40 \sqrt{ } 3)^{2} \\ & \text { o. } \\ & " 6702 "+" 1385.6 "-" 3769.9 " \\ & =4300 \text { to } 4320 \end{aligned}$	$\begin{aligned} & \text { M1 } \\ & \text { M1 } \\ & \text { A1 } \end{aligned}$	$[=3769.9 \ldots]$ i.e. their(b) (i) + their (b) (ii) - their $1 / 4$ circle o.e. $933^{1 / 3} \pi+800 \sqrt{ } 3$

\begin{tabular}{|c|c|c|c|c|c|}
\hline 4 \& ii \& ```
\(\mathrm{AB}=7.8(0), 7.798\) to 7.799 seen
area \(=52.2\) to 52.3
\(\tan 0.91=\mathrm{ST} / 12.6\)
\(\mathrm{ST}=12.6 \times \tan 0.91\) and
completion (16.208...)
area OSTR \(=[2 \times][0.5 \times] 12.6 \times\)
their(16.2) nb 204. ...
area of sector \(=0.5 \times 12.6^{2} \times 1.82\)
\(=144.47\)...
\(\operatorname{Logo}=59.6\) to 60.0
\(\operatorname{arc}=12.6 \times 1.82[=22.9 \ldots]\)
perimeter \(=55.3\) to 55.4
``` \& \begin{tabular}{l}
M1 \\
E1 \\
M1 \\
M1 \\
A1 \\
A1 \\
M1 \\
A1
\end{tabular} \& \begin{tabular}{l}
M1 for correct use of sine rule For long methods M1A1 for art 7.8 \\
M1 for \([2 \times][0.5 \times]\) their \(\mathrm{AB} \times 11.4 \times\) \(\sin 36^{\circ}\) \\
Accept 16.2 if ST is explicit but for long methods with pa check that their explicit expression \(=16.2\) \\
oe using degrees \\
soi by correct ans Accept 144, 144.5 \\
oe using degrees
\end{tabular} \& 4

8
8 \\
\hline
\end{tabular}



